4 Considerações teóricas

A utilização do Ga₂O₃ como fonte de gálio, em atmosfera nitretante, para a obtenção de GaN, foi estudada em algumas rotas de síntese sob diferentes condições e procedimentos experimentais^{31,74,86}.

Alguns destes métodos, quando analisados somente pela variação de energia livre de Gibbs padrão, ΔG^0 , mostraram-se inviáveis para a obtenção de GaN³¹. Apesar de valores positivos ΔG^0 para a faixa de temperatura considerada nos experimentos, estes mesmos métodos são bem sucedidos para a produção de GaN.

Uma análise mais cuidadosa mostra que ΔG^0 não pode ser considerado um parâmetro absoluto para a análise da viabilidade de um processo. Um levantamento dos processos de obtenção de GaN a partir de Ga₂O₃ em atmosfera de amônia será apresentado em maiores detalhes a partir dos diagramas de composição de equilíbrio versus temperatura para estes sistemas reacionais. Este mesmo levantamento será apresentado para o sistema reacional Ga₂O₃/NH₃/carbono avaliado no presente trabalho.

4.1 Análise da decomposição da amônia no sistema reacional

Nesta seção serão discutidos os aspectos termodinâmicos e cinéticos para o uso da amônia, $NH_3(g)$, no sistema de nitretação e a influência destes aspectos na obtenção de GaN. Considerando-se apenas os fatores termodinâmicos, a utilização da amônia em altas temperaturas mostra-se inviável, devido a sua decomposição, em temperaturas mais elevadas, gerando as espécies $N_2(g)$ e $H_2(g)$, como mostra a reação 4.1.

$$NH_3(g) \rightarrow \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$
 (4.1)

Uma avaliação cinética, no entanto, mostra que o uso da amônia como agente nitretante é possível para os processos nos quais a nitretação ocorre em reator aberto.

4.1.1 Aspectos termodinâmicos da decomposição da amônia

A decomposição da amônia é prevista para temperaturas superiores a 400°C a partir de uma avaliação termodinâmica do sistema, conforme mostrado na Figura 4.1.

Figura 4.1 – Composição de equilíbrio para amônia na faixa de temperatura entre 25-1200 °C.

Assim, de acordo com a Figura 4.1, a decomposição da espécie $NH_3(g)$ resulta no surgimento de uma espécie não reativa – $N_2(g)$, em temperaturas superiores a 400 °C. Este diagrama, no entanto, mostra o equilíbrio alcançado quando as espécies se encontram em um sistema fechado. No presente estudo, a síntese do GaN é realizada em um sistema aberto. A seguir serão considerados os aspectos cinéticos da decomposição da amônia no sistema reacional.

42

4.1.2

Aspectos cinéticos da decomposição da amônia

Sistemas semelhantes ao empregado no presente estudo mostram que a decomposição da amônia ocorre de forma lenta em um sistema reacional aberto, alterando de maneira insignificante a quantidade de NH₃(g) presente. Segundo Lee e Harris⁸⁸, a quantidade de amônia no sistema depende da pressão parcial da espécie, tempo de residência e condições da superfície. Além destes fatores, pode-se utilizar dados cinéticos relativos à decomposição da amônia, conforme adotado por Moura⁸⁹ e Di Lello^{91,92}, na síntese de AIN, para se estabelecer a quantidade de NH₃(g) no interior do reator.

Baseado no perfil de temperaturas do forno utilizado nesta trabalho, mostrado na Figura 4.2 e através dos dados cinéticos apresentados por Holzrichter e Wagner⁸⁹⁻⁹², a taxa de decomposição da amônia pôde ser avaliada para as condições reacionais adotadas neste estudo. A Tabela 4.1 mostra os parâmetros cinéticos para a taxa de reação de decomposição da amônia. Observa-se que a temperatura indicada nesta tabela é muito superior à temperatura utilizada no estudo. Nos cálculos de decomposição da amônia versus comprimento do reator, extrapolou-se a equação de taxa de decomposição da amônia para temperaturas mais baixas.

Figura 4.2 - Perfil de temperaturas do forno

Parâmetros Cinéticos	Valores para T = 2200-3300K e		
	P= 2.03 - 495 kPa		
Fator de frequência (A)	5.5x10 ¹⁵ l/s		
Energia de ativação (E _a)	451 kJ/mol		
Ordem de reação (α)	1		

Tabela 4.1 – Parâmetros cinéticos para a decomposição da Amônia

Com esses parâmetros é possível estabelecer a variação do número de moles de NH₃ no interior do reator. A Figura 4.3 mostra a variação da concentração molar de amônia no reator para uma concentração inicial de 0,0401 moles/L e vazão de amônia na entrada de reator de 0,3 L/min, de acordo com as condições adotadas nos procedimentos experimentais. Para as três temperaturas indicadas, observa-se que a decomposição de amônia é insuficiente para reduzir de maneira significativa a sua quantidade no local de reação (placa porosa, localizada em Z = 0,2 m).

Figura 4.3 - Variação da concentração de NH₃ versus comprimento do reator

Observa-se um aumento da taxa de decomposição da amônia com o aumento de temperatura. Esta decomposição pode ser desprezada, pois nos experimentos executados nesse trabalho a faixa de temperatura variou entre 873 e 1373 K. A metodologia, cálculos e parâmetros utilizados para a elaboração do gráfico mostrado na Figura 4.2 estão apresentados no **Apêndice 1.**

A questão da decomposição de NH₃ em sistemas abertos também foi abordada por Lee e Harris⁸⁸. De acordo com este estudo, a decomposição da amônia em altas temperaturas pode ser expressa a partir da reação 4.2:

$$\mathsf{NH}_{3}(\mathsf{g}) \to (1-\xi)\mathsf{NH}_{3}(\mathsf{g}) + \frac{1}{2} \xi \mathsf{N}_{2}(\mathsf{g}) + \frac{3}{2} \xi \mathsf{H}_{2}(\mathsf{g})$$
(4.2)

Onde ξ é a conversão. O valor de equilíbrio para a conversão à 1300 K, ξ_{eq} , é de aproximadamente 0,9995 em um sistema fechado. Desta forma, a maior parte da amônia irá se decompor em N₂(g) e H₂(g) nesta temperatura, no equilíbrio termodinâmico. No entanto, não é fácil alcançar o equilíbrio termodinâmico em um sistema aberto, como o adotado no procedimento experimental. Assim, o valor de ξ para condições tipicamente utilizadas se situa por volta de 0,1⁸⁸.

4.2

Diagramas de composição de equilíbrio versus temperatura para nitretação do Ga_2O_3 em atmosfera de amônia

Os diagramas de composição de equilíbrio versus temperatura indicam as fases presentes de acordo com as espécies reagentes e com as condições de temperatura e pressão utilizadas no sistema. A seguir, serão mostrados diagramas obtidos através do programa HSC, para as rotas reacionais normalmente empregadas para a síntese de GaN, a partir da nitretação em atmosfera de NH₃, do Ga₂O₃. Além das rotas mencionadas acima, é analisada a rota proposta pelo presente trabalho, utilizando-se diferentes quantidades de carbono agregado ao meio reacional. As análises consideram a ausência de decomposição da amônia em sistemas abertos semelhantes às condições operacionais do presente trabalho

encontra respaldo, conforme mencionado anteriormente, nos dados cinéticos de decomposição da espécie NH_3^{90} e pelos trabalhos de Moura⁸⁹ e de Lee⁸⁸.

4.2.1

Nitretação de Ga₂O₃

Esta rota reacional foi estudada por Balkas *et al* ³¹ além de outros autores^{23,26}. Em relação a outros procedimentos, esta rota apresenta poucas dificuldades experimentais. Para efeito de comparação, o sistema descrito será avaliado em duas situações: 1) considerando a decomposição da amônia no sistema; 2) desconsiderando a decomposição da amônia no sistema (condição próxima à realidade reacional). A Figura 4.4 mostra as espécies presentes no equilíbrio para o sistema reacional, Ga₂O₃ e NH₃, na faixa de temperatura entre 100 e 1200°C, considerando a decomposição da amônia em temperaturas superiores a 400°C.

Figura 4.4 - Composição de equilíbrio para o sistema Ga₂O₃/NH₃(g) (considerando a decomposição do NH₃(g))

A seguir, na Figura 4.5 mostra-se o diagrama de composição de equilíbrio versus temperatura para as mesmas condições analisadas acima. Neste caso,

porém, simula-se um sistema reacional aberto, considerando-se a não ocorrência de decomposição da amônia.

Figura 4.5 – Composição de equilíbrio para o sistema Ga₂O₃ / NH₃(g) (desconsiderando a decomposição do NH₃(g))

A comparação entre as figuras anteriores mostra que apenas no sistema mostrado na Figura 4.5 há a formação da espécie GaN no meio reacional. A diferença entre os dois sistemas está na consideração de que não ocorre a decomposição da espécie NH₃ no segundo sistema (sistema aberto). A ocorrência efetiva desta decomposição tornaria inviável a obtenção do GaN a partir do uso da amônia como agente nitretante. No entanto, a amônia é amplamente utilizada para esse fim. Essa aparente incoerência, pode ser explicada pela velocidade com que a decomposição da amônia se efetua, conforme mostrado nos aspectos cinéticos de decomposição de NH₃ em sistemas abertos. Para os sistemas descritos a seguir, toda a análise termodinâmica será efetuada considerando a inexistência de decomposição do NH₃, conforme o comportamento de um sistema aberto.

4.2.2 Nitretação da mistura 4Ga + Ga₂O₃

Esta rota de síntese foi utilizada em inúmeros trabalhos para obtenção de GaN^{31,32, 44, 45}. Em relação à nitretação do Ga₂O₃ isoladamente, a utilização do gálio metálico homogeneizado ao Ga₂O₃ propicia elevadas taxas de produção de GaN. Neste sistema, a presença do gálio metálico no meio reacional favorece a formação da espécie intermediária Ga₂O, altamente reativa, facilitando o processo de nitretação. A Figura 4.6 mostra o diagrama de composição de equilíbrio versus temperatura para o sistema.

Figura 4.6 - Diagrama de composição de equilíbrio para o sistema Ga₂O₃ / 4Ga / NH₃(g)

4.2.3 Sistemas Ga₂O₃/NH₃/carbono

A avaliação destes sistemas tem como objetivo analisar o comportamento do Ga₂O₃ em presença de carbono em relação à nitretação com amônia para a obtenção de GaN. Para isso, são adicionadas ao sistema reacional diferentes quantidades de carbono (em excesso de NH₃), alterando significativamente a produção de GaN nas condições termodinâmicas apropriadas para a síntese. Estas condições, conforme mencionado anteriormente, consideram a inexistência de decomposição da amônia do sistema reacional.

4.2.3.1 Sistema Ga₂O₃/1C/4NH₃(g)

Figura 4.7 - Diagrama de composição de equilíbrio para o sistema Ga₂O₃/1C/NH₃(g)

4.2.3.2 Sistema Ga₂O₃/2C/4NH₃(g)

Figura 4.8 - Diagrama de composição de equilíbrio para o sistema Ga₂O₃/2C/4NH₃(g)

Figura 4.9 - Diagrama de composição de equilíbrio para o sistema Ga₂O₃/3C/4NH₃(g)

Conforme mencionado, a presença da espécie GaN é pequena ou inexistente quando considera-se a decomposição da amônia no sistema reacional. Na situação oposta, isto é, desconsiderando-se a decomposição do NH₃, há um aumento significativo da espécie GaN em temperaturas superiores a 1000°C. A obtenção de GaN torna-se mais favorável nos sistemas onde há um agente redutor para nitretação, nestes casos o gálio ou o carbono. A utilização do carbono em diferentes quantidades molares mostra que a proporção C/Ga₂O₃ igual a 3 é a que apresenta melhores resultados para a produção de GaN. Nestes, a obtenção de GaN alcança 2 moles por mol de Ga₂O₃ colocado no sistema, a partir da temperatura de 800 C.

A seguir são mostrados dados de ΔG^0 para os sistemas reacionais considerados.

4.3 Variação de energia livre de Gibbs padrão em diferentes sistemas reacionais para obtenção de GaN a partir de Ga₂O₃

Os sistemas reacionais que utilizam como um dos insumos o Ga₂O₃ para a obtenção de GaN estão listados na Tabela 4.2. Nesta tabela, estão incluídos os sistemas no presente estudo e os sistemas citados em literatura.

Sistema	Reação envolvida		
Reação (1)	$Ga_2O_3 + 2NH_3(g) = 2GaN + 3H_2O(g)$		
Reação (2)	$Ga_2O_3 + 4Ga + 6NH_3(g) = 6GaN + 3H_2O(g) + 2H_2(g)$		
Reação (3)	$Ga_2O_3 + 1C + 2NH_3(g) = 2GaN + CO(g) + 2H_2O(g) + H_2(g)$		
Reação (4)	$Ga_2O_3 + 2C + 2NH_3(g) = 2GaN + 2CO(g) + H_2O(g) + 2H_2(g)$		
Reação (5)	$Ga_2O_3 + 3C + 2NH_3(g) = 2GaN + 3CO(g) + 3H_2(g)$		

Tabela 4.2 – Sistemas reacionais para a obtenção de GaN a partir de Ga_2O_3

A variação da energia livre de Gibbs padrão associada a estes sistemas, de acordo com a temperatura, está mostrada na Figura 4.10. Esta figura indica valores de ΔG^0 mais negativos para a reação 2 até uma temperatura de 1200 ^oC. A partir desta temperatura, a reação 5 apresenta os valores mais negativos de ΔG^0 .

Figura 4.10 – Variação de ΔG^0 em diferentes sistemas reacionais para a obtenção de GaN

4.4 Comportamento fluidodinâmico do sistema

O levantamento das condições dos leitos é importante para o estudo das reações gás-sólido. No presente estudo, identificou-se as condições para leito fixo, fluidizado ou de arraste de partículas a partir das vazões dos gases que são utilizados no sistema, em diferentes temperaturas.

Estas condições são usadas para se estabelecer o diagrama de Grace⁹⁶, que permite correlacionar o diâmetro adimensional da partícula d_p⁻ com a velocidade adimensional u⁻, de acordo com as equações:

$$dp^* = dp \left[\frac{\rho N H_3 (\rho Ga_2 O_3 - \rho N H_3) g}{\mu^2 N H_3} \right]^{1/3}$$
(4.3)

$$u^* = u \left[\frac{\rho^2 N H_3}{(\rho G a_2 O_3 - \rho N H_3) g. \mu N H_3} \right]^{1/3}$$
(4.4)

u	=	velocidade superficial do gás, (m/s)
d _p	=	diâmetro das partículas, (m)
ρGa_2O_3	=	massa específica do Ga ₂ O ₃ , (kg/m ³)
ρNH₃	=	massa específica da amônia, (kg/m ³)
μNH₃	=	viscosidade da amônia, (Pa.s)
g	=	aceleração da gravidade, (m/s ²)

A partir destas equações, pode-se determinar as fronteiras entre leito fixo, fluidizado e de transporte pneumático (arraste das partículas).

A equação que descreve a fronteira entre leito fixo e fluidizado é dada por:

$$u^* = [(33,7^2 + 0,0408.(dp^*)^3)^{1/2} - 33,7].\frac{1}{dp^*}$$
(4.5)

As equações a seguir descrevem a fronteira entre o leito fluidizado e o arraste para diferentes faixas de número de Reynolds (Re):

$$u^* = \frac{(dp^*)^2}{18} \longleftrightarrow \operatorname{Re} < 0,4 \tag{4.6}$$

$$u^* = 0,26dp^* \longleftrightarrow 0,4 < \operatorname{Re} < 500 \tag{4.7}$$

$$u^* = (3, 1.dp^*)^{1/2} \longleftrightarrow 500 < \text{Re} < 200000$$
 (4.8)

O número de Reynolds estabelece um critério para a transição de um fluxo laminar para turbulento em termos de uma quantidade adimensional.⁹⁶

No presente estudo, o reator utilizado pode ser considerado um tubo de seção reta circular. Neste caso, o número de Reynolds pode ser calculado pela equação 4.9⁹⁶:

$$Re = \frac{D.vNH_3.\rho NH_3}{\mu NH_3}$$
(4.9)

onde:

Re	=	Número de Reynolds
D	=	Diâmetro do tubo, (m)
vNH ₃	=	Velocidade média do fluido, (m/s)

A velocidade média da amônia, uNH_3 , é medida pela vazão volumétrica do fluido, qNH_3 , dividida pela área da seção reta do reator, A :

$$u = \frac{qNH_3}{A} \tag{4.10}$$

A partir destas equações, foram elaborados diagramas de Grace para as temperaturas de reação de 1000 e 1100 °C e faixas granulométricas situadas entre 0,1 e 50 μ m para 99% do pó.

O estudo nestas temperaturas deve levar em conta a expansão da amônia que ocorre no interior do reator, alterando, assim, os valores do Número de

Reynolds. O gás fluidizante utilizado, NH_3 , teve sua vazão estabelecida em 0,3, 0,4 e 0,5 L/min.

A medição do diâmetro de partículas foi realizado por feixe de LASER a partir do equipamento CILAS 1064. Os resultados desta análise encontram-se descritos no **Apêndice 2**.

Os diagramas de Grace apresentados pelas Figura 4.11 e 4.12 mostram o comportamento fluidodinâmico do sistema nas temperaturas de 1000°C e 1100°C, respectivamente. Pode-se observar, a partir destes diagramas, que ao utilizar-se as vazões de 0,4 e 0,5 L/min de amônia, existem condições para o arraste e fluidização das partículas mais finas. Na vazão 0,3 L/min, existe apenas uma pequena faixa operacional para a fluidização do leito.

Figura 4.11 – Diagrama de Grace para 1000°C

O diagrama de Grace para a temperatura de 1100° C é mostrado na Figura 4.12. Pode-se observar que não ocorre uma modificação visível das faixas de fluidização e de arraste para todas as faixas de vazão de NH₃, comparando-se com

a Figura 4.11. A Tabela 4.3 especifica o comportamento das partículas presentes neste sistema em ambas as faixas de temperatura.

Figura 4.12 - Diagrama de Grace para 1100⁰C

	1		1 110	. ~ .	
Diametro de	Log do	Comportamento em diferentes vazões de			
partícula (µm)	diâmetro	NH ₃			
	adimensional				
		0,3 (L/min)	0,4 (L/min)	0,5 (L/min)	
0,10	-2,49	Fluidiza	Arraste	Arraste	
0,15	-2,31	Fluidiza	Arraste	Arraste	
0,23	-2,13	Fluidiza	Fluidiza	Arraste	
0,34	-1,95	Fluidiza	Fluidiza	Arraste	
0,52	-1,78	Fluidiza	Fluidiza	Arraste	
0,78	-1,60	Fixo	Fluidiza	Fluidiza	
1,16	-1,42	Fixo	Fluidiza	Fluidiza	
1,74	-1,25	Fixo	Fluidiza	Fluidiza	
2,61	-1,07	Fixo	Fixo	Fluidiza	
3,92	-0,89	Fixo	Fixo	Fluidiza	
5,88	-0,72	Fixo	Fixo	Fluidiza	
8,82	-0,54	Fixo	Fixo	Fixo	
13,2	-0,36	Fixo	Fixo	Fixo	
19,9	-0,19	Fixo	Fixo	Fixo	
29,8	-0,013	Fixo	Fixo	Fixo	
44,7	0,16	Fixo	Fixo	Fixo	
67,0	0,34	Fixo	Fixo	Fixo	

Tabela 4.3 – Comportamento fluidodinâmico do sistema

Baseado no comportamento fluidodinâmico mostrado na tabela acima, os experimentos foram realizados utilizando-se uma vazão de amônia de 0,3 L/min. Nesta condição, as partículas na faixa granulométrica entre 0,1 e 0,5 μ m sofrem fluidização. No entanto, estas partículas correspondem a cerca de 8 % do Ga₂O₃ utilizado, conforme análise granulométrica do óxido, mostrada no **Apêndice 2**. Assim, pode-se afirmar que os experimentos realizados ocorreram sob condições de leito fixo.